
pyOpenMS: A Python-based interface to the OpenMS mass-spectrometry algorithm
library

Hannes L. Röst,1, 2, ∗ Uwe Schmitt,3, ∗ Ruedi Aebersold,1, 4, 5 and Lars Malmström1, †

1Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, CH-8093 Zurich, Switzerland
2Ph.D. Program in Systems Biology, University of Zurich and ETH Zurich, CH-8057 Zurich, Switzerland

3mineway GmbH, 66121 Saarbrücken, Germany
4Competence Center for Systems Physiology and Metabolic Diseases, CH-8093 Zurich, Switzerland

5Faculty of Science, University of Zurich, CH-8057 Zurich, Switzerland
(Dated: October 19, 2015)

Abstract

pyOpenMS is an open-source, Python-based
implementation of the C++ OpenMS library, pro-
viding facile access to a feature-rich, open-source
algorithm library for mass-spectrometry based pro-
teomics analysis. It contains Python bindings that
allow raw access to the data-structures and algorithms
implemented in OpenMS, specifically those for file
access (mzXML, mzML, TraML, mzIdentML among
others), basic signal processing (smoothing, filtering,
de-isotoping and peak-picking) and complex data
analysis (including label-free, SILAC, iTRAQ and
SWATH analysis tools). pyOpenMS thus allows fast
prototyping and efficient workflow development in a
fully interactive manner (using the interactive Python
interpreter) and is also ideally suited for researchers
not proficient in C++. In addition, our code to wrap
a complex C++ library is completely open-source,
allowing other projects to create similar bindings with
ease. The pyOpenMS framework is freely available at
https://pypi.python.org/pypi/pyopenms/ while the
autowrap tool to create Cython code automatically is
available at https://pypi.python.org/pypi/autowrap
(both available under the 3-clause BSD licence).

Computational data analysis in the field of high-
throughput LC-MS/MS based proteomics can be very
diverse and in many cases must be tailored to a specific
set of samples or experimental condition. This is due to
the availability of a wide range of options at each step
of a proteomics analysis: Whole proteomes can be mea-
sured directly, fractionated using different techniques or
specific sub proteomes may be selectively enriched (us-
ing e.g., affinity-purification, cell surface capture, phos-
phopeptide enrichment and others). For quantification,
different isotopic labeling methods are available (e.g.,
ICAT, SILAC, iTRAQ, TMT) or a label-free strategy
can be chosen. At the data acquisition step, different
types of instruments either support data-dependent ac-
quisition (DDA) or data-independent acquisition (DIA)
while others support targeted data acquisition by se-
lected reaction monitoring (SRM). Finally, the overall

analysis strategy will depend (in addition to the options
chosen in upstream data acquisition steps) also on the
choice between different data processing options includ-
ing database search engines, spectral library searching or
a targeted analysis (for SRM or DIA) [1, 2].

OpenMS is an open-source, C++ based software li-
brary that accommodates the need for flexibility in the
analysis of proteomics data by providing over 100 exe-
cutable tools that perform different steps in the compu-
tational data analysis workflow, supporting nearly all file
formats and database search engines commonly used in
mass spectrometry-based proteomics [3–5]. It has proven
effective in analyzing datasets generated from isotopi-
cally labeled as well as label-free samples [6, 7]. Recently,
support for targeted proteomics data such as SRM and
DIA has been added [8]. While being a very useful tool
for data-analysis, the development of novel algorithms
or the combination of existing algorithms into complex
data analysis pipelines requires extensive knowledge of
C++ programming and the OpenMS software develop-
ment process.

To make custom algorithm development and the flex-
ible generation of data analysis pipelines accessible to a
broader community of proteomics researchers, we have
developed pyOpenMS, a Python-based wrapper to ac-
cess the OpenMS library. Taking advantage of the
OpenMS model which compiles the computing-intensive
algorithms into a shared library, we wrapped the ex-
posed API of the library using Cython and the novel
autowrap tool developed for this project, providing full
access to OpenMS objects and functions from Python.
Python is a mature scripting language with high ac-
ceptance in the biology community, already supporting
many tasks from biological sequence handling with Bio-
Python [9] to structural modeling and visualization with
PyMOL [10] and PyRosetta [11], to numerical computa-
tion and advanced plotting with numpy/scipy [12] and
matplotlib [13]. We were thus able to combine the power
of OpenMS with Python, a mature, easy-to-learn, cross-
platform scripting language that is especially suitable for
beginners.

We used Cython (C-Extension for Python) and a
newly developed software called autowrap to automat-
ically wrap C++ classes and functions and make them
available from within Python. Wrapping a class starts

by creating a .pxd file containing only the class and func-
tion declarations of the code to be wrapped. Autowrap
then automatically generates a corresponding .pyx file,
handling the memory management using boost shared



2

A B

C

930 932 934 936 938 940 942 944 946
m/z

0

5000

10000

15000

20000

In
te
n
si
ty

FIG. 1: The pyOpenMS workflow and several complex examples achievable using pyOpenMS A) The workflow we
used to create the Python bindings is depicted on the left side. The only manual step is to write the .pxd function declaration
files, which are then automatically wrapped using autowrap, then converted to C++ using Cython and finally compiled into
a Python extension module. On the right side is a sample Python script that imports the extension module on the top and
executes a simple workflow to load data from a proteomics experiment, then processes the data including smoothing and
peak-picking and finally extracts de-isotoped features using the FeatureFinder tool. B) To illustrate the power of prototyping
algorithms in Python, we have written a small (< 75 lines, see supplemental material) Python script that implements an Fast
Fourier Transform (FFT)-based lowpass filter using scipy for peak-picking and visualizes the results using matplotlib. The
raw sample data (taken from the OpenMS testdata set) is shown in blue and the picked peaks in red. C) As another example
of how pyOpenMS can be integrated with other powerful Python packages, we used PyMol to display the sequence coverage
of the pdb structure 4D8B in a recent proteomics experiment performed in our lab: golden parts of the structure were covered
by identified peptides (blue parts were not covered). See supplemental material for our script.

pointers, type-checking of Python-input and conversion
of more complex STL datastructures (as well as OpenMS-
internal datastructures like StringList or Datavalue) to
and from Python automatically. This ensures consis-
tent code quality and error handling while allowing for
very fast and easy wrapping of new classes; the au-
towrap tool is available as a standalone software at the
Python Package Index PyPI under the 3-clause BSD li-
cence (https://pypi.python.org/pypi/autowrap). In the
next step, Cython parses the generated .pyx file as well
as the associated .pxd function declaration files (basi-
cally specifying which functions should be wrapped) and
generates a .cpp file that is then compiled into a Python-
module (see Figure 1 for our workflow). In this manner,
we have wrapped over 4000 C++ method calls in Python.
The whole process is tightly integrated with the OpenMS
build process and is currently executed nightly on the
newest SVN checkout and a battery of over one two hun-
dred tests are automatically executed to ensure constant
compatibility with the newest C++ source code.

The pyOpenMS Python bindings provide a rich set of
features which include:

File handling : pyOpenMS provides fully standard-
compliant readers and writers of the file formats de-

veloped by the Proteomics Standards Initiative (PSI)
[14], including mzML, TraML, mzIdentML as well as
the upcoming mzQuantML standard [15–17]. The un-
derlying raw data is conveniently provided in numpy
arrays for fast data handling and processing with
tools outside pyOpenMS, for example allowing plotting
with matplotlib or data processing using a numeric li-
brary like scipy.signal. In total, pyOpenMS supports
over 30 different file formats including PepXML, Pro-
tXML, trafoXML, IdXML, featureXML, consensusXML,
mzXML and many more.

Basic functionality and signal processing : Most ba-
sic signal processing algorithms implemented in OpenMS
have been wrapped in pyOpenMS, including smoothing,
baseline filtering and peak-picking algorithms. Further-
more, functions that perform common mass spectromet-
ric tasks such as TOF calibration, de-isotoping and chro-
matogram extraction, and a set of spectral filters are also
available.

Complex analysis tools: Most interestingly, pyOpenMS
can handle the complex analysis tools provided in
OpenMS and exposes their corresponding APIs to
Python - which are in most cases very simple, requiring
only input and output data objects as well as a parameter



3

handling object (see Figure 1 for an example workflow).
We have thus wrapped the function calls performed
by the OpenMS SILACAnalyzer, OpenSwathAnalyzer,
iTRAQAnalyzer, FeatureFinderCentroided and Feature-
FinderSuperHirn (for 2-dimensional feature detection in
LC-MS/MS maps) as well as several other complex tools.

To illustrate the power of pyOpenMS, we have cre-
ated several demonstration applications which show how
pyOpenMS can be integrated within the Python pro-
gramming environment to rapidly produce high-quality
results (all Python code is provided in the supplemen-
tal material). In Figure 1 we show three such applica-
tions: i) starting with a simple workflow that performs
data smoothing and de-isotoped feature quantification
using pyOpenMS ii) to the demonstration of a novel
peak-picking implementation using Fast Fourier Trans-
form (FFT) in scipy [12], to a three dimensional visual-
ization of a protein structure overlaid with the peptides
identified in a LC-MS/MS experiment in gold using py-
MOL [10].

In conclusion, pyOpenMS is a versatile Python-based
implementation of the OpenMS functionality, allowing
even novice users to create, adapt and manage relatively
complex workflows in Python with ease while expert pro-
grammers can benefit from the fast prototyping offered
by the Python language. Thus the user has the opportu-
nity to write prototype code or whole analysis workflows
coupled with a statistical analysis in the same script,
while having direct access to the high-performance al-
gorithms in the OpenMS C++ library. In addition to a
mere wrapping of C++ function calls, we have adapted
the Python objects to the “look and feel” of Python,
providing iterators and direct attribute access for core
classes – making it even easier to use the interface. This
allows for new applications and an algorithmic as well

as workflow development that was previously closed to
non-experts in C++ programming. Finally, providing ac-
cess to a mature algorithmic library for proteomics data
analysis aligns with recently described efforts, such as
pymzML and Pyteomics, to use Python for proteomics
data analysis [18, 19]. The complete Python bindings as
well as all source code, sample tools and workflows are
open source and accessible through the OpenMS SVN
repository.

In addition to the Python-bindings for OpenMS de-
scribed here, we also provide the open-source autowrap
tool that allows fast and easy wrapping of C++ code for
Python, thus facilitating similar projects in the future.

Contributions

H.R. & U.S. designed, implemented and executed the
C++ code and the analysis workflow. H.R. & U.S. &
L.M. & R.A. wrote the manuscript. L.M. designed and
supervised the study.

Acknowledgements

The authors would like to thank the developers of the
OpenMS project for their support during this project and
all their work and effort to integrate pyOpenMS into the
nightly build system of OpenMS; specifically we would
like to thank Stephan Aiche and Oliver Kohlbacher.

Funding: This project was support by ETH Zurich,
Department of Biology, within the frame of an IT-
strategy initiative. H.R. was funded by ETH (ETH-30
11-2).

The authors have declared no conflict of interest.

[1] Aebersold, R., Mann, M., Mass spectrometry-based pro-
teomics. Nature 2003, 422 , 198–207.

[2] Domon, B., Aebersold, R., Options and considerations
when selecting a quantitative proteomics strategy. Na-
ture Biotechnology 2010, 28 , 710–721.

[3] Sturm, M., Bertsch, A., Gröpl, C., Hildebrandt, A. et al.,
OpenMS – an open-source software framework for mass
spectrometry. BMC Bioinformatics 2008, 9 .

[4] Kohlbacher, O., Reinert, K., Gröpl, C., Lange, E. et al.,
TOPP – the OpenMS proteomics pipeline. Bioinformat-
ics 2007, 23 , e191–197.

[5] Bertsch, A., Gröpl, C., Reinert, K., Kohlbacher, O.,
OpenMS and TOPP: open source software for LC-MS
data analysis. Methods in molecular biology (Clifton,
N.J.) 2011, 696 , 353–367.

[6] Weisser, H., Nahnsen, S., Grossmann, J., Nilse, L. et al.,
An Automated Pipeline for High-Throughput Label-Free
Quantitative Proteomics. Journal of Proteome Research
2013, 12 .

[7] Nilse, L., Sturm, M., Trudgian, D., Salek, M. et al.,
SILACAnalyzer - A Tool for Differential Quantitation of

Stable Isotope Derived Data. Masulli, F., Peterson, L.,
Tagliaferri, R. (eds.), Computational Intelligence Meth-
ods for Bioinformatics and Biostatistics, vol. 6160 of
Lecture Notes in Computer Science, chap. 4, pp. 45–55,
Springer Berlin Heidelberg 2010 .

[8] Röst, H., Rosenberger, G., Navarro, P., Gillet, L. et al.,
OpenSWATH: Automated, targeted analysis of data-
independent acquisition (DIA) MS-data. under revision
2013.

[9] Cock, P. J., Antao, T., Chang, J. T., Chapman, B. A.
et al., Biopython: freely available Python tools for com-
putational molecular biology and bioinformatics. Bioin-
formatics 2009, 25 , 1422–1423.

[10] Delano, W. L. 2002, The PyMOL Molecular Graphics
System.

[11] Chaudhury, S., Lyskov, S., Gray, J. J., PyRosetta: a
script-based interface for implementing molecular mod-
eling algorithms using Rosetta. Bioinformatics 2010, 26 ,
689–691.

[12] Jones, E., Oliphant, T., Peterson, P., Others 2001-,
SciPy: Open source scientific tools for Python.



4

[13] Hunter, J. D., Matplotlib: A 2D Graphics Environment.
Computing in Science & Engineering 2007, 9 , 90–95.

[14] Orchard, S., Hermjakob, H., Apweiler, R., The pro-
teomics standards initiative. Proteomics 2003, 3 , 1374–
1376.

[15] Martens, L., Chambers, M., Sturm, M., Kessner, D.
et al., mzML–a community standard for mass spectrom-
etry data. Molecular & cellular proteomics : MCP 2011,
10 .

[16] Deutsch, E. W., Chambers, M., Neumann, S., Levander,
F. et al., TraML—A Standard Format for Exchange of
Selected Reaction Monitoring Transition Lists. Molecular
& Cellular Proteomics 2012, 11 .

[17] Jones, A. R., Eisenacher, M., Mayer, G., Kohlbacher,
O. et al., The mzIdentML Data Standard for Mass
Spectrometry-Based Proteomics Results. Molecular and
Cellular Proteomics 2012, 11 , M111.014381+.

[18] Goloborodko, A., Levitsky, L., Ivanov, M., Gorshkov, M.,
Pyteomics—a Python Framework for Exploratory Data
Analysis and Rapid Software Prototyping in Proteomics.
Journal of the American Society for Mass Spectrometry
2013, 24 , 301–304.

[19] Bald, T., Barth, J., Niehues, A., Specht, M. et al.,
pymzML—Python module for high-throughput bioinfor-
matics on mass spectrometry data. Bioinformatics 2012,
28 , 1052–1053.


